Why do we need mathematical models?

MATHEMATICAL MODELING FOR INFECTIOUS DISEASE PLANNING IN AFRICA

(30 minutes)



Births

Deaths



The Epidemiologic Transition: A Theory of the Epidemiology of Population Change
Author(s): Abdel R. Omran

Source: The Milbank Memorial Fund Quarterly, Vol. 49, No. 4, Part 1 (Oct., 1971), pp. 509-
538

FIGURE I. THE TRANSITION IN SWEDEN

54-
— 50}
=
9 L
[ ot L
< 46
. L
2
% 42+
o L -80
8 38t ; 1
e r & H 70
v 34f 8 BIRTH RATE "
5ol g
~ 30l 160 =
o ] :
H 26} 130
= r z

221 2
J
< L 140®
E 40
S 8k <
. N 43.02
2 2
2
2 R BB Death Rate Exceeds Birth a
pd Rate 2.0
< 1of Birth Rate Exceeds Death

n / Rate
1 1 1 1 1 1 1 L I 1 1 1 1 1 ] 1 1

1 1 1 i 1
BO 30 50 ‘70 '°0 1910 ‘30 'S0

YEAR

Source: Vielrose, E., ELEMENTS OF THE NATURAL MOVEMENT OF POPULATIONS, Oxford, Pergamon
Press, Inc., 1965.

1 1
70 ‘30 'so0 70 90



Births
DIFFERENCE EQUATION

Pop size (t+1) = Pop size (t) + births*Pop size(t) — deaths™® Pop size (t)
= Pop size (t) + (births — deaths)*Pop size(t)

P(t+1) = P(t) + (births — deaths)*P(t)

ORDINARY DIFFERENTIAL EQUATION
dP/dt = (births — deaths)*P

Deaths



Births

Number of people

Ageing

Deaths

Deaths



Am J Lifestyle Med. 2009 July 1; 3(1 Suppl): 195-268. doi:10.1177/1559827609335350.

The Epidemiologic Transition: Changing Patterns of Mortality and

Population Dynamics

Robert E. McKeown. PhD. FACE [Professor and Chairl
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The five stages of the demographic transition

The demographic transition 15 a model that deseribes why rapid population growth is a temporary phenomenon,

4 Birth rate
Death rate
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Headaches

Healthy: no headache

Lady Agnew of Lochnaw
John Singer Sargent 1892-3

Rate at which healthy
people get headaches

Rate of recovery from a
headache

Headache

Self-portrait during cluster headache
Catherine Graffam
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Healthy: no headache

Rate at which healthy people get
headaches

Rate of recovery from a headache

Headache




Definitions

* Prevalence
* Proportion of cases at any specific time

* Incidence
* Number of new cases over some time period

e Steady state
 State in which numbers in compartments do not change



Rate of recovering from headaches
(1/avg duration of headaches)

People with no h—y People with

headache headaches

Rate of acquiring headaches
(incidence of headaches)



A* (N-P)

d*P

N= population size

P =# of sick

A = per capita rate
of getting a
headache

d = recovery rate




A* (N-P)

d*P

N= population size

P = # of sick
A = headache rate
d = recovery rate




Chronic diseases versus infectious diseases

Chronic diseases: Population outcome is the

average of many individual outcomes
considered in isolation.

f
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Four pinball machines
62 Wayne Thiebaud, 1962

e L

Infectious diseases: Individual outcomes
depend on others. Individual risks require an
understanding of the dynamics of the population.

Pool parlor
Jacob Lawrence, 1942



What compartments are needed in our model?

Antibodies

Viral load

Susceptible Infected and Infectious Recovered




Entirely susceptible population

Susceptible
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Interventions: how can we reduce transmission?

Probability of infectious contact

Recovery rate

Probability of transmission given contact



PREVALENCE=I/(S+I+R)
or incidence*duration

Probability of infectious contact (k)

N

Probability of transmiission given contact (b)

INCIDENCE depends on b*k Recovery rate



Definitions

* Force of infection ()\) the per capita rate at which susceptible individuals contract
infection

Therefore, the rate of new infections in the population is A*number of susceptible individuals

* Transmission coefficient (B) composite measure of probability of infectious contact (k)
and transmission probability given contact (b)



Population at risk: how to think about the
contact rate

26 For a nice explanation see: https://parasiteecology.wordpress.com/2013/10/17/density-dependent-vs-frequency-dependent-disease-transmission/



Population at risk: how to think about the
contact rate

Frequency-dependent

S
/\

Number of contacts per unit time

Population density

27 For a nice explanation see: https://parasiteecology.wordpress.com/2013/10/17/density-dependent-vs-frequency-dependent-disease-transmission/



Density vs Frequency dependence

How do we formulate A with respect to I?

B=b*k

Number of contacts (k)
change with population

does not
size

/

)\ - B|/N, where N is the population size

FREQUENCY DEPENDE

A = Bl

DENSITY DEPENDENT

NT

S

Number of contacts (k) scales
with population size




How would you write down difference equations to
describe this process?

Difference equations are in the form:

Number of people at time t+1 = Number of people at time t... plus or minus how
many people entering that category in one time step



Move to continuous Ordinary Differential Equation (ODE) framework:
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Interventions: how can we reduce transmission?

Probability of infectious contact

Recovery rate

Probability of transmission given contact



vaccination




TREATMENT

Duration of infectiousness



What compartments are needed in our model?

Antibodies

Viral load

Susceptible Infected and Infectious Recovered
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Dynamics of infection underlie model structure

A. Malaria

weeks to months

B. HIV

months to years

Pathogen abundance in host

C. Tuberculosis

A

<>
weeks to years

months to years

Time

Childs et al (2015) Epidemics



Time Lines for chickenpox

Time of infection
Noninfectious

Dynamics of latent infectious (dead. recovered)
infectiousness period period

Dynamics of Incubation symptomatic Nondiseased
disease period period

\ y
Y

Most transmission occurs prior to symptoms




Time Lines for HIV

Time of infection

Endstage
Dynamics of J latent J infectious J
infectiousness period period
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Time Lines for Pertussis

Time of infection

Dynamics of J latent l infectious l
infectiousness period period

18 days ]
Dynamics of Jlncubationl Symptomatic J
disease period period

| 8days |

Most transmission occurs after symptoms




How would you include a latent period?
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Headaches: discrete and ode formulation

## Load deSolve so we can use the ode() command
library(deSolve)

## Set your time steps, initial values, parameters
times <- seq(@, 5000, by = 1)

yinit <- c(no_headache = 0.95, headache = 0.05)
parameters <- c(incidence = 0.02, recovery = 0.01)

## Create an ODE model -- the solver needs your model written as a function

## that takes in a vector of times, initial values, and parameters

## (in that order) and returns a list with derivatives of your compartments

## relative to time.

headache_model <- function(times, yinit, parameters) {
with(as.list(c(yinit, parameters)), {

## Define your no headache compartment
dno_headache <- recovery*headache - incidence*no_headache

## Define your headache compartment
dheadache <- incidence*no_headache - recovery*headache

## Save your compartments into a new variable, as a list
comparts <- list(c(dno_headache, dheadache))

## Don't forget you need to return your compartments
return(comparts)

9,




Optional slides on supplemental code



R code: discrete population model

#zimple discrete time step model of a population with births and deaths
#the model 1s run for 1008 timesteps (see the "for" loop)

#when birth rate and death rate are equal, the population is at equilibrium
#we round because there are no "half" people

birth_rote = @.1

death_rote = @.1

population_t_current = 10008

population_matrix = HNULL

fFor{t in 1:1088){

population_t_next = populotion_t_current 4+ round{birth_rote*populotion_t_current) - round{death_rate*population_t_current)
population_motrix = rbind{population_matrix,population_t_next)

population_t_current = population_t_next

1



R code: discrete population model

#zimple discrete time step model of a population with births and deaths
#the model 1s run for 1008 timesteps (see the "for" loop)

#when birth rate and death rate are equal, the population is at equilibrium
#we round because there are no "half" people

birth_rote = @.1

death_rote = @.1
population_t_current = 10008
population_matrix = HNULL

For(t in 1:10883{

population_t_next = populotion_t_current + rnund(birth_ratE*population_t_current}l—|rnund{denth_rnte*pcpulnticn_t_current}

population_motrix = rbind{population_matrix,population_t_next)
population_t_current = population_t_next

1



R code: discrete population model

plot(population_matrix)
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R code: discrete population model

Try births > deaths

and births < deaths
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Headaches: discrete and ode formulation

## Headache example: discrete model of a non-infectious process

## Let's set some initial values and parameters

N_t <- 500 # Number of people without a headache at time zero

Pt <0 # Number of people with a headache at time zero

incidence <- 0.95 # Probability of going from {No Headache} to {Headache}
recovery <- 0.9 # Probability of going from {Headache} to {No Headache}

## Again, we make a data container
dat <- NULL

## Make a sequence of time steps
timesteps <- 1:100 ## Or, equivalently, seq(l, 100, 1)

## Loop through our sequence of time steps Do the CalCU|at|0n
for (t in timesteps){

## Calculate the number of unaffected at time t + 1
N_tl <- N_t - round(incidence*N_t) + round(recovery*P_t)

Put it into the data matrix
## Calculate the number of affected at time t + 1

P_tl <- P_t + round(incidence*N_t) - round(recovery*P_t)

/////

/ Update the values

## Bind these numbers as a new row (rbind) in our data container
dat <- rbind(dat, c(N_tl1, P_t1))

\

A

## Update the unaffected and affect for the next time step

N_t <- N_t1 e
Pt < P_tl

}

## Plot it

matplot(dat, xlab="time", ylab="number of people”, type="1", 1ty = 1)
legend("topright", col = 1:2, legend = c("no headache","headache"), lwd=1)
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