Assessing sensitivity of
intervention effects

MATHEMATICAL MODELING FOR INFECTIOUS DISEASE PLANNING IN
AFRICA

60 minutes



Questions: sensitivity analysis

Question 1: How sensitive are the intervention effects to changes in
other parameter values?

Question 2. What parameters are most influential on the model
outcomes?
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Learning objectives

At the end of this lecture, you would:

1. Be able to assess the sensitivity of intervention effects to changes
in one or more key parameters

2.Be able to interpret results on the sensitivity of intervention
effects



Outline

1. Question 1: How sensitive are the intervention effects to changes
in other parameter values?

2. Demonstration with Berkeley Madonna

Slides on Question 2 are also provided (from slide 22) but will not be
treated in this lecture.
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Question 1: How sensitive are the intervention effects to changes
in other parameter values?
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Intervention: Surveillance

Compartmental diagram for an Ebola transmission model
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Credit: Ebola Rwanda team

Relevant parameter: §,

rate at which infectious
individuals are detected
(and hospitalized)



Summary of surveillance effects

Total number of deaths by day 365
d = 1/4 day™ d = 1/8 day™
1244 82159

6 = hospitalization rate for infectious individuals (per day)

Conclusions based on results above: The higher surveillance rate (6 = 1/4) leads
to reduced mortality, compared to the lower surveillance rate (6 = 1/8).



Assume we are uncertain about the
transmission rate for frontliners, ;.

What factors might influence this uncertainty?

* Uncertainty about per-contact infectivity
* Uncertainty about contact rates

How do we interpret our intervention effects
(surveillance) considering this uncertainty?
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What if we are uncertain about 5}, ?

Will these conclusions hold if the transmission rate (f}) is changed?
Are the intervention effect results sensitive to changes in 55,7

B

Baseline value: 2.4

Total number of deaths by day 365

—> Conclusion: Higher

6 = hospitalization rate for infectious individuals (per day)
fr, = transmission rate for frontliners

surveillance is better
than lower surveillance
for deaths.

How may we go about answering the above question?
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Assessing the sensitivity of surveillance effects

conclusions to changes in 55,

Baseline value: 2.4

Bh

Total number of deaths by day 365

S—
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Conclusion: Higher surveillance is
better than lower surveillance
for deaths.

Does the conclusion remain
unchanged across different
values of 5;,?



Assessing the sensitivity of surveillance effects
conclusions to changes in 55,

Bh

Total number of deaths by day 365

S—

Si—

-1 -1
Baseline value: 2.4
0 54 1879
0.25 72 2755
3.25 4637 184859
3.5 6908 213921
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Conclusion: Higher surveillance is
better than lower surveillance
for deaths.

Does the conclusion remain
unchanged across different
values of 5;,?



Assessing the sensitivity of surveillance effects
conclusions to changes in 55,
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By, = transmission rate for frontliners

B Total number of deaths by day 365
-1 -1

Baseline value: 2.4 — Baseline
0 54 1879
0.25 72 2755 Do we arrive at the same
conclusions with the summary
3.25 4637 184859 as we do with the baseline?
3.5 6908 213921

1436 64886 —— Summary (Column
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Conclusions
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By, = transmission rate for frontliners

B Total number of deaths by day 365
-1 -1

Baseline value: 2.4

0 54 1879

0.25 72 2755

3.25 4637 184859

3.5 6908 213921

1436 64886
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Surveillance effects
are not sensitive to
changes in (y,.



Assessing the sensitivity of surveillance effects
conclusions to changes in 55,

Main idea:

1. We will compare the interventions across different values of [, and
summarize the intervention results for each intervention.

2. The summary result (Su) will be compared to the baseline result (Ba).

3. If Su agrees with Ba, intervention effects are not sensitive to changes in f3;,.

However, if Su does not agree with Ba, intervention effects are sensitive to
changesin ;.
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A note: The same procedure may be applied if
interested in only a few values of (5},

Bh

Baseline value: 2.4

Total number of deaths by day 365

— Baseline

Do we arrive at the same
conclusions with value 1 as we
do with the baseline?

3.5

6908 213921

Value 1
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For example,
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Age-targeted vaccine
priaritization scenarios, y
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Figure 1. Effects of various vaccination scenarios on symptomatic infections at peak (upper panels),
cumulative infections (middle panels), and deaths (lower panels) as a percentage of the general
population, Ghana. The assessment used 2 different contact matrices in the main analysis and an
effective reproductive number of 3.13 for the initial strain. A) Results assuming 1 million persons were
vaccinated in 3 months. B) Results assuming 1 million persons were vaccinated in 6 months. Percentage

of cumulative infections is &gt;100% because of waning immunity from natural infection and vaccination.

Ofori SK, et al. Age-Stratified Model to Assess Health Outcomes of
COVID-19 Vaccination Strategies, Ghana. Emerg Infect Dis.
2023;29(2):360-370. https://doi.org/10.3201/eid2902.221098
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A procedure for assessing the sensitivity of
intervention effects to changes in key parameters



Assessing the sensitivity of surveillance effects
conclusions to changes in an uncertain parameter

Main idea:

1. We will compare the interventions across different values of the uncertain

parameter (p) and summarize the intervention results for each
intervention.

2. The summary result (Su) will be compared to the baseline result (Ba).

3. If Su agrees with Ba, intervention effects are not sensitive to changes in p.
However, if Su does not agree with Ba, intervention effects are sensitive to
changes in p.
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Assessing the sensitivity of surveillance effects

conclusions to changes in 55,

Steps:
1. Write down your research question for this analysis: How sensitive are the
results on surveillance effects to changes in 55,7

2. Decide on the model outcome for this analysis.

3. Write down the values of 3;, to be assessed. (Refer to activity 1 where you
defined bounds for key parameters)

4. Decide on the surveillance levels to be compared.
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Assessing the sensitivity of surveillance effects

conclusions to changes in 55,

Steps:
5. For each surveillance level, compute the model outcome for all values of (.

6. With the results from step 5, complete the table below.

Model outcome

Uncertain parameter Intervention

levels of interest

Values of interest for
uncertain parameter
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Assessing the sensitivity of surveillance effects

conclusions to changes in 55,
Steps:

7. Summarize the results from step 6 separately for each surveillance level:
compute an average of the model outcomes for each surveillance level.

8. Compare the summary results (Su) from step 7 to the baseline (Ba). If Su
agrees with Ba, we may conclude that surveillance effects are not sensitive to
changes in [;,. If Su does not agree with Ba, we may conclude that surveillance
effects are sensitive to changes in 5},.




Assessing the sensitivity of surveillance effects
conclusions to changes in 55,

A demonstration in Berkeley Madonna
using the outlined steps



Question 2. What parameters are most
influential on the model outcomes?



A closer look at Question 2

* Could be interpreted as: Where is the uncertainty in the
model outcome coming from?

* Analysis on question 2 quantifies how variation in the
model outputs can be apportioned to the various inputs
(or parameters)

5 Varying arrow widths are an
illustration of differences in
a [ contributions of parameters
,B v to model uncertainty
Reference: Saltelli an.d Annonni. (2910). Environmental Modelling & 3 Global Health = mngﬁ:ﬁ iz cenrerfr —
Software. https://doi.org/10.1016/j.envsoft.2010.04.012 —— EQUITY — SchooLoF PR HENTH 88835



https://doi.org/10.1016/j.envsoft.2010.04.012

Why sensitivity analyses?

= To investigate how much variation in a parameter influences the
variation in the model output

o How much of the uncertainty in model incidence is explained by
the transmission rate parameter?

o Investigate parameter importance

o If parameter is of biological/other significance, SA results allow
us to make statements about the connection between the
biological/other factors and the transmission process/outcomes
of interest



Why sensitivity analyses?
Parameter uncertainty Model output uncertainty
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Sensitivity analyses vs uncertainty analyses

Sensitivity analyses (SA) Uncertainty analyses (UA)
Question: Where is the uncertainty Question: How uncertain Is the
In the model inference coming model inference (or estimate)?
from?

Quantifies how variation in the Characterizes the confidence

model outputs can be apportioned bounds for a model output
to the various parameters

Reference: Saltelli and Annonni. (2010). Environmental Modelling & 3 ?trlleﬁ F R AR i
Software. https://doi.org/10.1016/j.envsoft.2010.04.012 e soooLst i 333333



https://doi.org/10.1016/j.envsoft.2010.04.012

In practice...

UA and SA are coupled and termed “sensitivity
analysis”, although they have different objectives.

Saltelli and Annonni. (2010). Environmental Modelling & Software. '3 -Glotv:?;‘.hll'i;ah}'. F R AR
https://doi.org/10.1016/j.envso f£.2010.04.012 oo oo
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Examples of SA methods

Nonlinear
Output-parameter
S—— . .
relationship
Monotonic Non-monotonic
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Examples of SA methods

Nonlinear
- Output-parameter
relationship
‘ Monotonic ‘ Non-monotonic
« Spearman rank correlation coefficient « Sobol’ method
(RCC or Spearman’s rho) * Fourier amplitude sensitivity
« Latin Hypercube Sampling/Partial test (FAST)
Rank Correlation Coefficient
« Extended FAST (eFAST
(LHS/PRCC) ( )
Marino et al. (2008). Journal of Theoretical Biology. 3i°k§§u}1§r§ ¥ fﬁ?ﬂﬁ it

oooooo
sess

https://doi.org/10.1016/].jtbi.2008.04.011



https://doi.org/10.1016/j.jtbi.2008.04.011

One-at-a-time SA (OAT-SA) may not be reliable

« OAT-SA involves changing the value of a parameter OAT while keeping the others
constant

« Why OAT-SA will not work with the models we are studying:

= Assumes model is linear — in many cases, epidemic models are not

= Does not consider interaction effects between parameters
(simultaneous change of parameters is needed for interactions to be
detected)

= Does not sufficiently explore the parameter space
(this problem is worse in higher dimensions)

« See Saltelli and Annonni (2010) for proof
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Latin Hypercube Sampling/Partial Rank
Correlation Coefficient (LHS/PRCC)

General idea
 Efficiently explore parameter space (LHS)

* |ldentify and rank key parameters whose uncertainties contribute
to model output uncertainty (PRCC)



O Random Samples X LHS Samples

. | - ottty
« Sampling scheme HE e TR

1. Divide parameter range/space* into equally probable intervals
2. Sample n times without replacement from each interval

* Explores the parameter space more efficiently than simple random

*The fieure assumes a two-dimensional s ——uwsmo—— g panuann CENTER fir LHS: McKay et al. (1979). Technometrics. https://doi.org/10.2307/1268522
8 G Clobal Health TH.CHAN ~ s3fisfcommunicasle  Figyre reference: Preece and Milanovi¢ (2015). IEEE Transactions on Power Systems.

parameter space. https://doi.org/10.1109/TPWRS.2015.2417204
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Partial Rank Correlation Coefficient

« Correlation
= Strength of linear association between parameter and output

 Partial correlation

= Correlation between a parameter and an output while discounting the linear
effects of other parameters on the output

« Partial rank correlation
= Partial correlation computed on rank-transformed data (why transform?)

Condition: Little to no correlation between parameters
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LHS meets PRCC

1. Set ranges for each parameter and get 3. Compute the partial correlation between
LHS samples. output and each parameter.
Parameter e
y +—a— Pl
P1 | P2 |P3
0.5 | 0.7 | 0.02 y < b—> P2 | .1<3b,c<1
0.05 y <« c— P3
(S J
2. Compute model output (y) for each 4. Interpret, COﬂSidering statistical Significance:
LHS sample and rank transform all results. [—1 < PRCC < 1]
PL (P2 |P3 |y /
05107 (002 |1
005 |3 Perfect negative Perfect positive
correlation correlation
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Activity: Discuss an application of LHS/PRCC
to a cholera model



Application of LHS/PRCC to a cholera model

QOutline

1. Model structure

2. 0utcomes of interest

3. Testing monotonicity assumptions
4.LHS parameter ranges
5.LHS/PRCC results
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Problem. " Master's Thesis, University of Tennessee, 2012.



Cholera transmission model

| P ?

S incidence (p) " I Y,

n
v
e
w

Y1

>_
v
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Parameter table

Table 3.1: Parameter List for Cholera Epidemic Model.

Symbol | Description Value

§g Initial # susceptible humans with partial immunity 3000

So Initial # susceptible humans without partial immunity 10,000 — Sy

I 49 Initial # asymptomatic infecteds 0

I Initial # symptomatic infecteds 0

R 49 Initial # recovered humans (asymptomatic) 0

Rso Initial # recovered humans (symptomatic) 0

Vo Initial # humans with vaccinated immunity 0

Bro Initial concentration of highly infectious (HI) vibrios in | 0
environment

By Initial concentration of non-highly infectious (non-HI) | k1 /2
vibrios in environment

P Probability of infecteds moving from symptomatic class to | 0.6
infected class without partial immunity

r Scaling factor used to compute By from Sy,. 0.1

Br, Ingestion rate of non-HI vibrio from environment 0.008 day !

B Ingestion rate of HI vibrio from environment. r % B day !

KL Half saturation constant of non-HI vibrios 103 cells/ml

KH Half saturation constant of HI vibrios kr/700

cells/ml

Gomero, Boloye, "Latin Hypercube Sampling and Partial Rank
Correlation Coefficient Analysis Applied to an Optimal Control
Problem. " Master's Thesis, University of Tennessee, 2012.



Parameter table continued

el Cholera-related death rate for asymptomatic infecteds e2/20 day !

€2 Cholera-related death rate for symptomatic infected 0.03 day~1

Y1 Cholera recovery rate (asymptomatic) 0.75 day—!

Y2 Cholera recovery rate (symptomatic) 0.1 day—!

w1 Rate of waning cholera immunity from asymptomatic | 1/180 day !
infecteds to susceptibles with partial immunity

wy Rate of waning cholera immunity from symptomatic | 1/(365 * 2)
infecteds to susceptible humans with partial immunity day 1

w3 Immunity waning rate: susceptibles without partial | 1/(10 * 365)
immunity — susceptibles with partial immunity day~1

Wy Immunity waning rate: humans with vaccinated immunity | 0.001 day !
— susceptibles without partial immunity

s Scaling factor used to compute 7 from 7 100

m Rate of contribution to HI vibrios in environment by | 0.008 cells/ml-
asymptomatic infecteds day-human

Mo Rate of contribution to HI vibrios in environment by | s % n; cells/ml-
symptomatic Infected. day-human

X Transaction rate of vibrios from HI to non-HI state 5 day !

d Death rate of vibrios 1/30 day—*

U Rate at which susceptible and asymptomatic infecteds are | 0 day—!
vaccinated daily

b Natural birth rate of humans 0.03/365 day*

d Natural death rate of humans 0.02/365 day—!

Gomero, Boloye, "Latin Hypercube Sampling and Partial Rank
Correlation Coefficient Analysis Applied to an Optimal Control
Problem. " Master's Thesis, University of Tennessee, 2012.



Outcomes of interest

1. Total number of infected individuals

2. Total number of symptomatic infected individuals
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Make a guess: which parameters will be most influential
on the outcomes of interest, and by how much?

d

1
RS

v

Outcomes of interest:

1. Total number of infected individuals

2. Total number of symptomatic
infected individuals

Comments on question above

e Difficult to tell by observation!

* PRCC allows us to get answers using a
principled procedure.

Gomero, Boloye, "Latin Hypercube Sampling and Partial Rank
Correlation Coefficient Analysis Applied to an Optimal Control
Problem. " Master's Thesis, University of Tennessee, 2012.
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LHS parameter ranges

Parameter Min Baseline Max

w1 0.001 1/180 0.03

ws 0.001 1/(2*365) 0.003

w3 0.0003 1/(10*365) 0.001

D 0.3 0.6 0.9

T 0.01 0.1 1

e 0.01 0.03 0.05

e1 = e3/20 0.0005 0.0015 0.0025

" 1/2 0.75 1

2 1/14 0.1 1/7

m 0.0001 0.008 0.05

M9 1 100 200

S 0.001 0.008 0.08

Biro k1 /500 KkL/2 K[,

So 6000 10000 - So 10000
P covirean TN i Sohotcane Comelation conticiont Anmnvas Applied t on Optimal Contre

Problem. " Master's Thesis, University of Tennessee, 2012.



LHS/PRCC results
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Total Infectious Total Symptomatic Infecteds

Parameters PRCC p-value PRCC p-value
wi: Waning R4 to S *0.67692 4.00E-05 -0.04699 0.80525
wo: Waning Rg to S || 0.1715 0.36485 -0.35212 0.056347
ws: Waning S to S 0.20889 0.26794 0.13251 0.48515
p: Prop. Sympt. 0.10656 0.57518 0.37524 0.041024
B =1 * BL *0.6368 0.000155 0.20728 0.27173
e1:Asympt. death rate || 0.46806 0.009096 -0.10068 0.59655
e2:Sympt. death rate -0.27806 0.13681 -0.1235 0.51557
" -0.0382 0.84114 0.28712 0.12396
Yo -0.09226 0.62776 -0.26012 0.16508
m 0.41337 0.023175 0.060938 0.74905
Mo = S*1M 0.41748 0.021709 -0.25446 0.17479
Br: Low infectious *%%0.86994 4.31E-10 0.13033 0.49243
Bro -0.26088 0.16379 0.33594 0.069529
So -0.0008 0.99665 *%_0.73322 4.05E-06

(*) is used to indicate possible contributors (PRCC values: ~0.5 to 0.69 or -0.5 to -0.69), (**) is used to indicate very likely contributors to uncertainty (PRCC
values: ~0.7 t0 0.79 or -0.7 to -0.79) and (***) is used to indicate highly likely contributors to uncertainty (PRCC values: ~0.8 to 0.99 or -0.8 to -0.99). Grey
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Alternative means of presenting PRCC results
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Figure: Global sensitivity analysis of the
impact of parameters on cumulative
infections (left panel) and deaths
averted (right panel) over the range of
daily vaccination rate using Partial rank
correlation coefficient (PRCC).

Ofori et al. Modeling the Health Impact of Increasing Vaccine
Coverage and Nonpharmaceutical Interventions against
Coronavirus Disease 2019 In Ghana. In press.
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