Skip to content
Harvard T.H. Chan School of Public HealthHarvard T.H. Chan School of Public Health main site homepage
  • Quicklinks
    • About the School
    • Academics
    • Admissions
    • Research
    • Faculty
    • Student Life
    • News
    • Alumni
    • Frontiers
    • Make A Gift
Center for Communicable Disease Dynamics
Center for Communicable Disease Dynamics
  • Home
  • About
    • Director’s Welcome
    • About the Center
    • People
    • News & Events
      • Events Calendar
      • ID Epi Spring Seminar Series
      • 11th Annual Workshop to Increase Diversity in Mathematical Modeling and Public Health
    • Opportunities
    • Contact
  • Publications
  • COVID-19
  • Support CCDD
Posted on March 26, 2020

Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking

  • Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking

    • Sarah F. McGough, Michael A. Johansson, Marc Lipsitch, Nicolas A. Menzies
    • https://www.biorxiv.org/content/10.1101/663823v1
Share this:FacebookTwitterLinkedInReddit
Categories:Coronavirus (COVID-19)

Post navigation

Previous PostPrevious The demand for inpatient and ICU beds for COVID-19 in the US: Lessons from Chinese cities
Next PostNext Scenario exploration for SARS-CoV-2 infections
Harvard T.H. Chan School of Public Health
677 Huntington Avenue Boston, MA 02115
+1 (617) 495‑1000
  • Harvard Chan Home
  • Contact Us
  • Harvard University Home
  • Make a Gift
  • Privacy Policy
  • Report Copyright Violation
  • Accessibility
Copyright © The President and Fellows of Harvard College